Are Indonesian construction companies financially distressed? A prediction using artificial neural networks (doi:10.34820/FK2/2MZ443)

View:

Part 1: Document Description
Part 2: Study Description
Part 5: Other Study-Related Materials
Entire Codebook

Document Description

Citation

Title:

Are Indonesian construction companies financially distressed? A prediction using artificial neural networks

Identification Number:

doi:10.34820/FK2/2MZ443

Distributor:

Telkom University Dataverse

Date of Distribution:

2024-03-28

Version:

1

Bibliographic Citation:

Kristanti, Farida Titik; Safriza, Zahra; Salim, Dwi Fitrizal, 2024, "Are Indonesian construction companies financially distressed? A prediction using artificial neural networks", https://doi.org/10.34820/FK2/2MZ443, Telkom University Dataverse, V1

Study Description

Citation

Title:

Are Indonesian construction companies financially distressed? A prediction using artificial neural networks

Identification Number:

doi:10.34820/FK2/2MZ443

Authoring Entity:

Kristanti, Farida Titik (Telkom University)

Safriza, Zahra (Telkom University)

Salim, Dwi Fitrizal (Telkom University)

Distributor:

Telkom University Dataverse

Access Authority:

Salim, Dwi Fitrizal

Depositor:

Salim, Dwi Fitrizal

Date of Deposit:

2024-03-28

Study Scope

Keywords:

Business and Management, ANN, distress, financial, model, prediction, financial statements, balance sheet

Abstract:

Journal Scopus

Methodology and Processing

Sources Statement

Data Access

Notes:

CC0 Waiver

Other Study Description Materials

Other Study-Related Materials

Label:

Farida et al 2023.pdf

Notes:

application/pdf