Indonesian Translation of the Hadith of Bukhari (Multi-label) (doi:10.34820/FK2/HDQ1OJ)

View:

Part 1: Document Description
Part 2: Study Description
Part 5: Other Study-Related Materials
Entire Codebook

(external link) (external link)

Document Description

Citation

Title:

Indonesian Translation of the Hadith of Bukhari (Multi-label)

Identification Number:

doi:10.34820/FK2/HDQ1OJ

Distributor:

Telkom University Dataverse

Date of Distribution:

2023-10-05

Version:

1

Bibliographic Citation:

Adiwijaya, Adiwijaya; Al-Faraby, Said, 2023, "Indonesian Translation of the Hadith of Bukhari (Multi-label)", https://doi.org/10.34820/FK2/HDQ1OJ, Telkom University Dataverse, V1

Study Description

Citation

Title:

Indonesian Translation of the Hadith of Bukhari (Multi-label)

Identification Number:

doi:10.34820/FK2/HDQ1OJ

Authoring Entity:

Adiwijaya, Adiwijaya (Fakultas Informatika, Data Science)

Al-Faraby, Said (Fakultas Informatika, Data Science)

Distributor:

Telkom University Dataverse

Access Authority:

Adiwijaya, Adiwijaya

Depositor:

Adiwijaya, Adiwijaya

Date of Deposit:

2021-03-07

Study Scope

Keywords:

Computer and Information Science, Social Sciences, Text Data, Hadith Data

Abstract:

This dataset contains the Indonesian translation of the hadith of Bukhari in the text representation. Each text in the dataset has been categorized into Anjuran (suggestion), Larangan (prohibition), and/or Informasi (information) classes, which are validated by a hadith expert.

Methodology and Processing

Sources Statement

Data Access

Notes:

CC0 Waiver

Other Study Description Materials

Related Studies

Indonesian Translation of the Hadith of Bukhari (Single-label)

Related Publications

Citation

Identification Number:

10.1109/IALP.2018.8629263

Bibliographic Citation:

M. Y. Abu Bakar, Adiwijaya and S. A. Faraby, "Multi-Label Topic Classification of Hadith of Bukhari (Indonesian Language Translation)Using Information Gain and Backpropagation Neural Network," 2018 International Conference on Asian Language Processing (IALP), 2018, pp. 344-350

Citation

Identification Number:

http://dx.doi.org/10.18517/ijaseit.9.4.8894

Bibliographic Citation:

Mediamer, G. and Adiwijaya, F., SA (2019).“Development of Rule-Based Feature Extraction in Multi-label Text Classification”. International Journal on Advanced Science, Engineering and Information Technology, 9(4), pp.1460-1465

Other Study-Related Materials

Label:

data_testing.csv

Notes:

text/csv

Other Study-Related Materials

Label:

data_training.csv

Notes:

text/csv